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Major reported disasters linked to weather,

Russian Federation
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Madagascar
. Atropical cyclone
in 1977 cost US$ 1.3 hillion
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Droughtin 1991 cost
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WMO Report: Atlas of Mortality and Economic Losses from Weather,

Cyclone Nargis (2008):

climate and water extremes

Democratic People’s Republic of Korea
Floods ih 2007 caused over 600 deaths,
and nearly US$ 22.6 billion were attributed

' to flooding in 1995

A ' China _ :
" [Floods Jnotably in 1998, US$ 42.3 billion),
a cold wave in 2008 (US$ 22.5 billion) and
adrought in 1994 (US$ 21.3 billion)
were the costliest disasters’

: Japan
A tropical cyclone in 1991
(US$ 16.9 billion)
was the costliest event
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Philippines and Indonesia
Storms led to important human losses,
especially a tropical cyclone in the Philippine

in 1991 (5 956 deaths)

Thailand "
2011
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Australia
A drought in 1981 (US$ 15.2 billion) was

the costliest event, followed by the
201] floods {}JJS$ 7.5 billion)

Climate and Water Extremes (1970 — 2012)



Flood Damages in the United States

MOST DAMAGING OF ALL NATURAL DISASTERS
*  More than 50% of all deaths (US: 140 deaths/year)
* 1/3 of total economic loss (US: S6 billion/year)

»
U.S. Total Flood Damage, 1934—2000
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DONALD TRUMP & MIKE PENCE ARRIVE IN

LOUISIANA TO SURVEY FLOOD DAMAGE
FOX NEWS ALERT



What can we do?




Dealing with Floods

Need for High Resolution Flood Mapping Capability

Example of Ohio Basin
~800 streamflow gauging stations with continuous records
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Motivation

Limitation in our current information capacity
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® USGS gauge station ® USGS gauge station

Number of NHDPlus Rivers/Streams

Ohio Basin ~ 100,000
Continental United States ~ 2.7 million

How can we generate near-real time information EVERYWHERE?



Pre-defined Stream Network
Ioptiqnal]

/Meihodology

Modeling Framework 2

Pre-defined high
resolutionstreamlines

< Model generated coarse
resolutionstreamlines
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Model Calibration
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Hydrologic Model
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/quibrqtion of Hydrologic Model ,

Satellite based soil moisture data
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Evaluation for a Real Flood Event

Reference: w LK ’i
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Our model is ~ 75% accurate during
real flood events

Overestimation




Realization of “Model Uncertainty”

Model Uncertainty

Input Uncertainty Hydrologic + Hydrodynamic Uncertainty
 Weather + * Process representation
« Topography « Parameter equifinality

- Two different models
- Two setups of the same model

Streamflow comparison in Ohio Basin

SWAT vs. VIC-RAPID (same weather input)
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$aih to Realistic Predictions

SWAT with Channel and Floodplain Properties?

Most of the large scale land surface/ hydrologic models DO NOT
have any floodplain representation (e.g. VIC, Noah-MP)

Hydrologic fluxes (surface runoff, baseflow) from the grids are generally
dumped at the sub-basin outlet for routing

A new SWAT modeling approach that integrates channel and
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Integrated SWAT and LISFLOOD-FP Modeling for High Resolution Flood Inundation Mapping
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Questions?

Adnan Rajib: rajib.adnan@epa.gov
Venkatesh Merwade: vmerwade@purdue.edu
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